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The imaginary part of the dielectric function Im������ of rocksalt GdN is calculated using the linear
muffin-tin orbital method in the atomic sphere approximation. The local spin-density approximation with
added Hubbard-U terms �LSDA+U� is used to include orbital-dependent Coulomb interactions for the Gd 4f
and 5d orbitals. The spin-orbit coupling is shown to affect the dominant spin character of the bands only
negligibly so that we can analyze the optical interband transitions as being between bands of equal spin only.
The separate band-to-band contributions to Im������ are analyzed as well as the origin of the main peaks in the
Brillouin zone, allowing us to identify critical-point transitions. We find that the transitions from the upper
valence band �doubly degenerate along some portions of the Brillouin zone� dominate the spectrum. The
transitions to the minority-spin f bands occur as a double peak near 5.5–6 eV. The corresponding transitions of
the filled f bands to the conduction band have negligible contribution. Many of the peaks correspond to
complex avoided band crossings in the conduction band where local maxima and minima occur.
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I. INTRODUCTION

GdN is a bulk ferromagnetic semiconductor, which has
recently attracted significant new interest both
experimentally1–6 and theoretically.7–12 Its ferromagnetic
behavior even for stoichiometric GdN was established by
Li et al.,1 its semiconducting property was definitively estab-
lished by Granville et al.2 using transport properties, and the
theoretically predicted redshift of the gap13 below the Curie
temperatures was demonstrated experimentally by Trodahl et
al.3 Other studies by Leuenberger et al.5,6 showed that the
ferromagnetic transition is close to or coincides with a metal-
insulator transition, although this may be related to defects.
Several recent studies also pointed out the importance of the
strain in thin films on some of these properties.4,6,7 Magnetic
exchange interactions were studied by Larson et al.7,8,10,11

Band-structure calculations were presented by these same
authors as well as Ghosh et al.9 who also studied optical
response functions in the interband transition regime. While
optical spectra in the visible-UV range probing interband
transitions have not yet been measured, except near the gap,3

it is useful to further study the relation between optical re-
sponse functions and the band structure in order to facilitate
future experimental studies of the band structure via a deter-
mination of interband optical transitions. This is the goal of
the present paper.

II. COMPUTATIONAL APPROACH

The underlying theoretical approach used is the density-
functional theory14,15 within the local spin-density approxi-
mation �LSDA�. For systems with narrow f bands, however,
it is important to treat the orbital dependence of the Coulomb
interactions. We do this using the LSDA+U formalism.16–18

The 5d bands in Gd are not narrow but make up the bottom
of the conduction band. The LSDA approximation usually
underestimates band gaps. Therefore, it is also useful to in-
clude orbital-dependent Coulomb interactions for the d elec-
trons. This effectively allows us to shift the conduction band

up slightly so as to open a band gap adjusted to experiment.
In this method the screened Coulomb and exchange energy
of the d and f orbitals are first added to the LSDA functional.
This is particularly important for open-shell systems in
which case orbitals with certain m magnetic quantum num-
ber m=−� , . . .�, for a given angular momentum �, are occu-
pied and others are not. More precisely, the density matrix
corresponding to the orbitals treated at the LSDA+U level is
determined self-consistently. Then in order to avoid double
counting their m orbital independent average is subtracted
from it. It is important to recognize that the parameters Uf
and Ud in the LSDA+U method are semiempirical. For a
half-filled band as in Gd, only the effective Uf −Jf comes
into play. We assume that the exchange integral Jf is un-
screened and use the atomic value of 1.2 eV. The Uf
=9.2 eV in our case has essentially been fixed by the experi-
mentally known splitting between occupied and empty f or-
bitals in the series of Gd-pnictides.19 It was shown to also
lead to the correct occupied f band position in GdN.10 The
Ud is adjusted to give the correct band spin-averaged direct
gap at X as determined by Trodahl et al.3 Our band structures
obtained with this approach are in good agreement with a
recent GW �G for the Green’s function and W for screened
Coulomb interaction� calculation by Chantis et al.,12 except
for the position of the empty f bands. The latter has a marked
discrepancy from experiment in that GW calculation, as dis-
cussed in their paper. While Ghosh et al.9 also used the
LSDA+Ud+Uf approach, they still obtain a semimetallic
band structure. The difference is in the choice of parameters.
As mentioned, ours are chosen to incorporate the most recent
experimental findings on the material.

In contrast to previous band-structure investigations from
our research group10,11 which used a full-potential-linearized
muffin-tin orbital method �FP-LMTO�,20 we use here the
atomic sphere approximation �ASA�.21–24 While in principle,
optical matrix elements can also be calculated in FP-LMTO,
this has not yet been implemented in the code presently
available to us, while it has been in the ASA version of
LMTO. The latter should be quite accurate for a structure
with high symmetry as is the rocksalt structure and, in any
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case, we can check the accuracy of our band structures
against the FP-LMTO results and make adjustments, for ex-
ample, by using different sphere radii where needed. ASA is
more sensitive to sphere radii because it does not include
explicitly an interstitial region representation of the wave
functions but instead uses slightly overlapping space-filling
spheres and makes implicit assumptions about the behavior
of the wave function outside these spheres. We find that this
is even more crucial for the LSDA+U approach with f elec-
trons as will be discussed in more detail below. Also, the Uf
value need not be the same as in FP-LMTO because it is
essentially applied as a projection operator �

Uf−Jf

2 �� f��� f�,
where plus and minus signs refer to unoccupied and occu-
pied spin states, respectively. As such, it depends on the ac-
tual orbitals � f inside the spheres which depend somewhat
on sphere radius. The 6s, 5p, 5d, and the 4f Gd orbitals are
taken as valence states. Although the completely filled 5p
bands are rather deep and semicorelike, they still have a
significant dispersion and are thus preferably treated as band
rather than core states. To sample the Brillouin zone in the
self-consistent calculations, a shifted Monkhorst-Pack25 6
�6�6 mesh was used and was found to be sufficiently con-
verged. We perform our calculations at the experimental lat-
tice constant. The present LSDA+U method has been shown
to also reproduce well the structural and total-energy
properties.10,11

The imaginary part of the dielectric function is calculated
in the long-wavelength limit. The analysis of the spectrum in
terms of its individual band-to-band contributions is done
using

Im�� j���� = �2�e

m�
	2



v



c
� dk��vk�pj�ck��2

���Ec�k� − Ev�k� − ��� �1�

with pj =−i�� j as the momentum operator, using Gaussian
units. Local-field and excitonic effects are neglected in this
approach. It has been found in numerous previous studies
that when going beyond the present random-phase approxi-
mation �RPA� long-wave �LW� length limit, it is important to
include both electron-hole coupling and local-field effects
simultaneously. A few groups have implemented the Bethe-
Salpeter equation approach to include such effects.26–31 They
provide information on how the RPA-LW dielectric function
differs from the one including local-field and electron-hole
interaction effects but the analysis of the optical function in
terms of specific interband transitions is less obvious and
transparent in those approaches. So, ultimately, one still
needs to evaluate the optical response function as calculated
here in order to analyze it in terms of interband transitions.
Our present work thus presents only a first but important step
to a more complete understanding of the optical response
functions in these materials. To analyze this function the
separate Brillouin-zone integrals for each band pair �v ,c are
calculated. For the optical calculations, we used a finer 15
�15�15 unshifted k-point mesh and the tetrahedron inte-
gration method. One of the main effects of the electron-hole
interaction is that it draws oscillator strength to Van Hove
singularities in the joint density of states �JDOS�. While the

present calculation tends to have peaks where the bands are
approximately parallel over a rather large region of k space,
the electron-hole interaction increases the oscillator strength
at the points where the bands are exactly parallel, in particu-
lar, near M2-type Van Hove singularities, i.e., saddle points
with minima in two directions and a maximum in one direc-
tion or near two-dimensional �2D�-like saddle points. For
examples, of how these discrepancies between the RPA-LW
limit, as calculated here, and the dielectric function including
electron-hole interaction and hence the experiment can be
analyzed once good experiments are available, we refer the
reader to prior studies of GaN �Ref. 32� and CdSe.33 Unfor-
tunately, at present no experiments of this type are available
for GdN.

III. RESULTS

A. Band structures

Since the optical matrix elements as written above do not
affect the spin, we find transitions only between bands of the
same spin character. However, spin-orbit coupling mixes the
spin character of the bands. In that case, we need to be more
careful with calculating the matrix elements. The require-
ment is that the total angular momentum �orbital and spin� of
initial and final states should be connected by a nonzero
matrix element of the momentum operator. Inside each
sphere the wave function is expanded in partial waves and
thus labeled by l ,m ,	, with l ,m labeling the orbital angular-
momentum character and 	= �1 /2 the spin’s z component.
Using spherical components of the momentum operator �


with 
=0, �1, the matrix elements to be considered are

��l,m,	
u ��
��l�m�	�

u� �, where u=1,2 is used to distinguish �

and �̇, i.e., the partial waves at the linearization energy ��

and its energy derivative, respectively. The requirement is
then that m+	+
−m�−	�=0. If bands have a pure spin
character, we will only encounter 	=	� and hence only ma-
trix elements obeying m+
−m�=0 are required; but if they
are mixed, we may need additional matrix elements. We
avoid this complication by performing the optical calcula-
tions without spin-orbit coupling. To justify this picture of
considering transitions, only between bands of the same spin,
we first check that the spin character is mostly preserved
even when spin-orbit coupling is included.

As can be seen from Fig. 1 the spin character is largely
preserved in the band structure even when the spin-orbit cou-
pling is switched on. In this figure the bands are color coded
with a continuous mix of colors between red and blue ac-
cording to the mixing of spin up and spin down in the wave
function. Thus red is pure majority spin, blue is pure minor-
ity spin, and any shade of purple in between corresponds to
the degree of mixing. Unfortunately, this information is hard
to convey without color and is only available in the online
version

We can also see that the band structures shown here are in
good agreement with the full-potential band structures of
Ref. 11. We note, however, that this depends crucially on the
value used of Uf and the sphere radii adopted. Here we used
a value Uf =9.2 and s /w values of 1.159, 1.159, and 0.762
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for Gd, N, and empty spheres, respectively, with w as the
average Wigner-Seitz sphere radius and s as the ASA-sphere
radius of each species. We found that if we choose Gd sphere
ratios to N sphere ratios in the ratio of their atomic radii, the
valence bands showed an incorrect reversed spin splitting
�i.e., majority spin below minority spin�. We know this is
incorrect because the redshift of the gap which follows from
it has been clearly established experimentally.3 This indicates
a lack of hybridization of the N-p orbitals with the Gd-f . In
ASA LMTO these types of hopping matrix elements are de-
scribed by �iSij

� j with Sij as the structure constant and
potential parameters �Rl=−�2 /wW�JRl

� ,�Rl with i and j
indices representing atomic site and angular momentum
R , l ,m. Here W�f ,g=s2�f�s�g��s�− f��s�g�s�� is the Wronsk-
ian, the prime indicating the radial derivative, and J� is the
mix of spherical Bessel and Neumann functions that matches
onto the �̇y function which is orthogonal to the � function in
the sphere, also known as the nearly orthogonal representa-

tion. The point is that this potential parameter goes to zero if
the wave function � and its radial derivative are both going
to zero at the sphere boundary. Thus for a very localized
orbital as the Gd f and a large sphere, it becomes numeri-
cally too small to describe the coupling between Gd f and
N-p correctly. While in FP-LMTO the matrix elements are
calculated correctly regardless of the choice of spheres be-
cause the interstitial region is included explicitly, more care
is needed for the ASA. We are thus forced to choose the Gd
and N spheres more or less of equal radius. We still do not
want to make them too small by keeping a relatively smaller
empty sphere compared to the actual atom spheres. While
some dependence on this choice of parameters is unavoid-
able, the band structure thus obtained is in satisfactory agree-
ment with the full-potential one.

Finally, for reference in Sec. III B, we present the bands
of major interest to the optical transitions of majority and
minority spin separately, including symmetry labels in Fig. 2.
The main difference between the two is the presence of the
seven flat empty Gd-f bands. These bands are only labeled at
the � point. The symmetry labeling uses the standard nota-
tions of Bouckaert et al.34

B. Analysis of the optical response

The Im������ and Re������ for the minority and majority
spins are shown in Fig. 3. The part of the spectrum between
8 and 10 eV shows a strong similarity for both spins. The
part below 5 eV is clearly coming only from the near gap
part and shows considerable difference indicative of the
strong spin polarization of the top valence and bottom con-
duction bands. The main extra peak in minority-spin spec-
trum at about 5–7 eV can already be assigned to transitions
from the valence band to the minority f bands since these
bands are absent form majority spin. The counterpart transi-
tions from occupied f to conduction bands are much weaker
and would occur only above 12 eV where they are swamped
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FIG. 1. �Color online� The band structure of GdN with spin-
orbit coupling. Red indicates the majority-spin character while blue
indicates the minority-spin character.

−4

0

4

8

12

E
ne

rg
y (

eV
)

GdN majority spin

Γ

∆ 1

∆ 5

∆2’

∆ 1
∆ 5

∆ 1

∆ 2

X

X4’

X5’

X3

X1

X4’

X5
X3’

W

W1

W3

W3

W1

W2’

W2

L

L1

L3

L2’

L1

L3’

L3

L2’

Γ

Γ15

Γ1

Γ25’

Γ12

Γ1

K
Σ1

Σ3

Σ4

Σ3

Σ2

Σ1
Σ1

Σ4
Σ1

Σ1

X

−4

0

4

8

12

E
ne

rg
y(

eV
)

GdN minority spin

Γ

∆ 1

∆ 5

∆2’

∆ 1
∆ 5

∆ 1

∆ 2

X

X4’

X5’

X3

X1
X4’

X5

X3’

W

W1

W3

W3

W3

W1

W2’

W2

W1

L

L1

L3

L2’

L2

L1

L3’

L3

L2’

Γ

Γ15

Γ1
Γ2

Γ25’

Γ15’

Γ25

Γ12

Γ1

K
Σ1

Σ3

Σ4

Σ1

Σ2

Σ1
Σ1

Σ4Σ1

Σ1

X

FIG. 2. �Color online� Majority- �left� and minority- �right� spin bands of GdN with symmetry labeling.
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by the transitions between valence band and higher conduc-
tion bands. We have indicated some critical-point transitions
whose correspondence to the peaks is discussed below.

We note that these spectra show considerable more struc-
ture than shown for Im������ by Ghosh et al.9 However, that
author shows also the optical conductivity, which is propor-
tional to � Im������ in the range 0–10 eV. For a comparison
we show also the optical conductivity spectrum in Fig. 4.

Although, we will primarily analyze the Im������ func-
tion because it is most directly related to the interband tran-
sitions, its measurement requires either Kramers-Kronig
transformation from the reflectivity measurements or spec-
troscopic ellipsometry. Since the reflectivity is one of the
more directly measurable quantities, we show it in Fig. 5. We
show here both the individual spin contributions and their
sum, which is the only directly measurable quantity. Com-
paring the reflectivity with the dielectric function curves, we
see that the reflectivity stays high at higher energies than
Im������ and its high-energy peaks do not correspond di-
rectly to interband transitions but to the structure in the

Re������. We note that our reflectivity looks significantly
different from that given by Ghosh et al.9 This is primarily
because we have a semiconducting band structure, whereas
he has a semimetallic band structure and hence his spectrum
is dominated by the intraband transitions at low energy.

Generally speaking in all of these spectra, we can see
similar features for both spin with the minority-spin features
slightly higher in energy than the corresponding majority-
spin feature as expected. The only deviation from this rule is
that only in the minority-spin case, we see transitions to the
extra empty f bands.

We now separately analyze the optical response function
for majority and minority spins. We start with majority spin
because it is slightly simpler; no transitions involving the f
bands are involved. In Fig. 6 we show on the left the inter-
band differences between the top valence band and several of
the conduction bands plotted along symmetry lines of the
Brillouin zone. On the right, we show the corresponding con-
tributions to the Im������ along with the total. First of all,
this shows which band pair contributes mostly to each peak.
Second, we can now make a correspondence between the
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FIG. 3. �Color online� Real �dashed red� and imaginary �black solid� parts of the dielectric function of GdN for majority �left graph� and
minority spins �right graph�. Critical points associated with the peaks are indicated.
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major peaks in each contribution to regions of the Brillouin
zone where the corresponding band difference is flat, mean-
ing that the bands are parallel and hence the largest joint
density of states occurs. Often, these correspond to Van Hove
singularities called critical points. Although not included
here, the electron-hole interaction tends to further enhance
the peaks at these points because the electron and hole have
exactly the same velocity, which enhances their interactions
and leads to an enhanced spectral weight in the optical func-
tion.

We start with the transition between the upper valence
band and the lowest conduction band. For majority spin in
our counting, which starts from the 5p valence bands, these
are bands 14 and 15. In fact, there are three Gd-5p bands,
one N 2s, seven Gd-4f , and three N-2p valence bands of
majority spin. The onset occurs obviously at the X point and
only the region of the Brillouin zone near the =�-X line
can contribute at low energy. The band difference is very
steep along the X-W=Z and X-K=S lines, so only a small
tube along the  line contributes in this energy range. Hence
the JDOS is quasi-one-dimensional and this explains the
sharp onset which almost looks like a 1 /�E-type Van Hove
singularity.

Next, let us consider the selection rules along the  line.
The point group for this line is C4v. A vector along z has the
1 symmetry for the  line along �001� and hence allows
transitions between any two bands of the same symmetry for
light electric-field polarization along z. A vector along x or y
has 5 symmetry. Because 5 � 5=1 � 2 � 2� � 1, tran-
sitions from a 5 band �the upper valence band� to any other
symmetry band are allowed for light polarization perpen-
dicular to the  line in question. Also, 5 � i=5 for i
=1,1� ,2 ,2�. In short, all transitions from 5 are allowed. In,
particular, the transition we consider here is the 5-2� tran-
sition and is allowed for light polarization perpendicular to
this line. These are N-2p to Gd-dxy transitions. Of course, the
only nonzero matrix elements occur inside each sphere, but
both these bands have some hybridization between Gd and

N. In other words, the tails of the Gd d stick into the N
spheres and vice versa; the tails of the N-p orbitals stick into
the Gd spheres. Still, we can think of this as a charge-transfer
transition between the two atoms. Near the � point, the low-
est band has 1 symmetry. This is the bottom of the mainly
Gd-6s-like band. This transition is also allowed and gives a
second onset. We can see that the small peak at 3.9 eV cor-
responds to the transitions at the � point between the �15
valence-band maximum and the �1 conduction band. These
are allowed by the selection rules because a vector has �15
symmetry and �15 � �1=�15.

Next, we consider transitions from the upper valence to
the second conduction bands. This gives a somewhat
rounded peak centered at about 8 eV. We can see that the
onset of this peak falls near the wiggle in the band difference
along the � direction. We thus can label this peak as a �4-�2
transition. The peak falls pretty much at the energy of the K
point even though this is not strictly a high-symmetry point
and does not correspond to a Van Hove singularity. On the
other hand, there is a Van Hove singularity at the X point in
this band difference. Near X this band difference goes down
toward �, but it goes up in the perpendicular directions in the
square face of the fcc Brillouin zone: this is an M1-type Van
Hove singularity where the corresponding JDOS should di-
verge in slope coming from below. One can barely see this
because there is no extended region of k space with flat
bands associated with it. Nevertheless, this point, which is
the X5−X1 critical point might become enhanced by electron-
hole interactions and is expected at about 8.7 eV.

In the transitions from the upper valence to the third con-
duction bands, we see three sharp peaks. The first peak at 9.6
eV corresponds to the little flat region along X-W=Z, the
middle peak at 10.1 eV occurs near the L-point energy for
L3−L3�, and the highest peak at 10.7 eV lies just above the W
point, so we can label it as W3−W1. The symmetries along Z
for these bands are Z1 and Z3, respectively, so we can label
the first peak a Z1−Z3 transition. Roughly we can say that
these three peaks are associated with relatively parallel bands
along the whole Brillouin-zone surface. There is also a lower
peak at about 7.9 eV which again is associated with the
complex band crossings along �. Along � �point group C2v�
only the transitions between �1 and �2 are forbidden but the
valence-band maximum has symmetry �4 so all transitions
from it are allowed. The X5�−X4� critical point is also asso-
ciated with this band pair and may be expected to be en-
hanced by electron-hole interaction effects. Its energy occurs
just below the first peak in this region. It is an M1-type
singularity. The L3−L3� critical-point transition looks more
like a 2D saddle point because the band difference is rela-
tively flat in the hexagonal face of the Brillouin zone near L
but at a maximum along the �-L line. We note that also along
�=�-L all transitions are allowed. The point group here is
C3v. A vector along the � line belongs to �1; a vector per-
pendicular to the line belongs to �3 representations. The
former allows transitions between bands of the same symme-
try and the latter allows transitions between all symmetries
because �3 � �3=�1 � �2 � �3 and �3 � �i=�3 for i=1,2.

Transitions from bands 14 to 18, the fourth valence band,
give a peak mostly in the same energy region as 14–17. The
sharp features on it are associated with several wiggles in the
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band difference along X-W=Z, W-L=Q, and along � near L.
The latter coincides precisely with the peak at 9.6 eV we
encountered earlier and inspection of the bands shows that
this occurs because of the band crossing along � and the
peak corresponds to the maximum of the �1 band which
joins the �25� with the L1 point. Finally, in the transitions to
band 19, we see a very sharp peak at 11.8 eV, which clearly
comes from the very flat band difference near W and which
we thus label as W3−W2�. Note that the W2 and W2� are very
close to each other.

The contributions from transitions between band 13 and
the conduction bands are shown in Fig. 7. We can see a great
similarity with the transitions from band 14. This is no sur-
prise because the top two valence bands are degenerate along
 and � and nearly degenerate along X-W. The structure of
the peaks mostly reflects the conduction-band structure as
was already seen in the previous discussion and thus some of
the peaks associated with structure along � are just slightly
displaced to higher energy because this band is slightly lower
along that direction. Again all transitions are allowed.

The transitions originating in band 12 are shown in Fig. 8.
First, we see that most of these make only a small contribu-
tion to the overall dielectric function. Note that we have
multiplied them by a factor of 5 to make them visible. Along
 this band has 1 symmetry. Only transitions to bands of
symmetry 1 are allowed for polarization along this axis and
to bands of symmetry 5 for polarization perpendicular to
the axis. Thus, for example, transitions to the lowest conduc-
tion band of 2� symmetry near X are not allowed, and even
though there would have been a fairly large JDOS because
the bands are rather parallel over some region, we see that
the actual contribution to the optical function is small. It
should be recalled that only along the symmetry line the
transition is zero. At neighboring points it is not zero but
small. We can again see various correlations between ex-
trema in the band difference and the peak positions but since
they are all quite weak and do not give major contributions
to the peaks, we will not discuss it in detail. We only note

that the contribution 12–20 is sizable and gives rise to the
peak at 13.0 eV, which corresponds to the singularity near X
along X-K=S and X-�. It is thus related to the X4�−X3� criti-
cal point.

Now we turn to the minority spin. In this case, the three
valence bands of interest are 5–7. The conduction-band 8 is
Gd-dxy like near X and Gd-s like near �, bands 9–15 are
primarily f like, and 16–20 are Gd-d-like or s like. One
complication is that the �1 band starting at �1 as band 8
crosses through the f bands and becomes band 15 while band
8 is f like along this line. It connects the �2 to the L2.
Roughly speaking we expect transitions between bands �6,7
and �8,16–20 to resemble those originating in bands 13 and
14 for majority spin. There will, however, now be additional
transitions to the empty f bands 9–15. We have lumped the
contributions from bands 9–15 together in the dielectric
function. Since the f bands are flat and the top valence band
is relatively flat except between �-L and L-W, i.e., on the
hexagonal Brillouin-zone face, we expect a large JDOS for
these transitions.

The transitions originating in band 7 are shown in Fig. 9.
The discussion is pretty similar to that for the majority spin.
We again see an abrupt onset near the X5�−X3 followed by a
second peak for the �15−�1 transition. We then see the
empty f bands �bands 9–15� all collectively indicated in red
dashed line giving a strong contribution to the dielectric
function for the double-peaked structure at 5.5 and 6.0 eV.
We can see that these two peaks correspond roughly to the
minimum and maximum of these bands. They have a mini-
mum near � and a maximum near L and are basically flat
along . Since the f bands are flat, what we see is just the
upper valence-band dispersion reversed because we subtract
it. Band 15 obviously disperses away because it has become
the s-like conduction band and this gives this contribution its
slowly decreasing high-energy tail. In the 7–16 contribution
we see again a peak associated with the structure along �. In
the 7–17 contribution we see peaks coming from the near
band crossings along X-K=S: the flat region near L and the
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FIG. 7. �Color online� Energy-band differences between con-
duction bands and second highest valence band �No. 13� for major-
ity spin in GdN on the left and the corresponding contributions to
the Im������ shown in thick solid �black� line for the total and
corresponding line types and colors for the individual contributions.
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FIG. 8. �Color online� Energy-band differences between con-
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ity spin in GdN on the left and the corresponding contributions to
the Im������ shown in thick solid �black� line for the total and
corresponding line types and colors for the individual contributions.
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extrema near W. All of this is very similar to what we had for
the majority-spin bands but slightly shifted to higher energy
because of the spin splitting of the bands.

Transitions from band 6 are similar to those from band 7
and are shown in Fig. 10. The transitions from band 5 shown
in Fig. 11 are weaker as was the case also for majority spin.
The sharp peak at 13.8 eV can be seen to be related to a
singularity along the K-X=S line. The symmetry along S is
the same as along �. Inspection of the band symmetries
shows that we can label it as an S1−S4 transition. This peak
also has some contribution from transitions between bands 7
and 20 occurring along the Z line.

From the above discussion of the peaks in Im������, we
have seen that most peaks correspond to some kind of extre-
mum in the band differences and are strongly influenced by
JDOS. Selection rules played only a minor role because only
a few transitions �mostly from the third valence band down
from the top� are forbidden. We have also seen that the stron-
gest peaks arise from transitions from the top valence band.
Several of the strong peaks were related to near band cross-
ing related features in the conduction bands where the bands

of the same symmetry have avoided crossings and lead to
local maxima and minima. Ultimately, one is interested in
using this information to obtain band differences at high-
symmetry points. Their relation to the peaks can be obtained
from the above figures and discussion. We give a summary
of the allowed high-symmetry point transitions in Table I and
have indicated their association with peaks in Im������ in
Fig. 3. Finally, we caution that electron-hole interactions or
continuum excitonic effects may still significantly shift oscil-
lator strength in particular near M1-type Van Hove singulari-
ties.
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FIG. 9. �Color online� Minority-spin interband transitions start-
ing in the highest valence band �No. 7� �left� and their contribution
to Im������ �right�.
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FIG. 10. �Color online� Minority-spin interband transitions start-
ing in the second highest valence band �No. 6� �left� and their
contribution to Im������ �right�.
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FIG. 11. �Color online� Minority-spin interband transitions start-
ing in the third highest valence band �No. 5� �left� and their contri-
bution to Im������ �right�.

TABLE I. Critical-point transitions in electron volt.

Transition Majority spin Minority spin

�15−�1 3.61 4.17

X5�−X3 0.72 1.29

X5�−X1 8.69 9.53

X5�−X4� 9.09 10.44

X5�−X5 10.44 11.83

X4�−X1 9.73 10.20

X4�−X4� 10.13 11.11

X4�−X3 12.65 13.38

W3−W3 5.90 5.03

W3−W1 10.57 11.47

W3−W2� 11.58 12.63

W3−W2 11.66 12.65

W1−W3 6.63 5.98

W1−W1 11.30 12.42

L3−L2� 8.49 8.78

L3−L1 9.15 10.79

L3−L3� 10.15 11.00

L3−L3 13.92 15.01

L1−L2� 10.93 11.11

L1−L2� 11.59 13.12
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IV. CONCLUSIONS

Optical spectra related to interband transitions in GdN
were calculated. We showed first of all that it is useful and
valid to separate these in majority and minority spin separate
contributions by showing that the bands largely maintain
their pure spin character even when spin-orbit coupling is
included. The small spin-orbit-induced splittings can then be
ignored and the spectra calculated separately for each spin.
We presented real and imaginary parts of the dielectric func-
tion, the real part of the optical conductivity, and reflectivity
spectra for easy future comparison to experimental data.

We presented a detailed analysis of the imaginary part of
the dielectric function for each spin in separate band-to-band
components and analyze them in terms of specific critical
points in the Brillouin zone.

Of major importance is that we identify a peak which can
clearly be assigned to transitions from the valence band to
mainly the empty f bands which could thus be used experi-
mentally to locate the energy position of these bands relative
to the Fermi level. The corresponding transitions from filled
f bands to conduction band, however, are weak and over-
whelmed by stronger N 2p valence band to Gd 5d-like con-
duction bands.
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